apt-ostree/src/performance.rs
robojerk badb550c1c
Some checks failed
Build apt-ostree Package / Build apt-ostree Package (push) Failing after 3m10s
Test apt-ostree Build / Test apt-ostree Build (with existing libostree) (push) Failing after 2m56s
Build apt-ostree Debian package with libostree 2025.2 compatibility
- Fix compilation errors in src/main.rs and resolve import conflicts
- Add debian/compat file and ensure debian/rules is executable
- Downgrade Cargo.lock to version 3 for compatibility with system cargo
- Create working apt-ostree binary with basic CLI functionality
- Build apt-ostree_0.1.0-1_amd64.deb package (1.1MB)
- Package installs successfully and binary works correctly
- Ensure libostree-1-1 (>= 2025.2) dependency for bootc compatibility
- Test package installation and basic commands (status, version)
2025-07-22 05:45:32 +00:00

1389 lines
No EOL
52 KiB
Rust

use std::collections::HashMap;
use std::sync::{Arc, Mutex, RwLock};
use std::time::{Duration, Instant};
use tokio::sync::Semaphore;
use tracing::{info, warn};
use serde::{Deserialize, Serialize};
/// Performance optimization manager
pub struct PerformanceManager {
cache: Arc<RwLock<Cache>>,
metrics: Arc<Mutex<MetricsCollector>>,
parallel_semaphore: Arc<Semaphore>,
memory_pool: Arc<Mutex<MemoryPool>>,
advanced_config: Option<AdvancedPerformanceConfig>,
adaptive_cache: Option<Arc<Mutex<AdaptiveCacheManager>>>,
intelligent_memory: Option<Arc<Mutex<IntelligentMemoryManager>>>,
predictor: Option<Arc<Mutex<PerformancePredictor>>>,
}
/// Cache for frequently accessed data
#[derive(Debug)]
struct Cache {
package_cache: HashMap<String, CachedPackage>,
deployment_cache: HashMap<String, CachedDeployment>,
filesystem_cache: HashMap<String, CachedFilesystem>,
last_cleanup: Instant,
}
/// Cached package information
#[derive(Debug, Clone)]
struct CachedPackage {
data: PackageData,
created_at: Instant,
access_count: u64,
last_accessed: Instant,
}
/// Cached deployment information
#[derive(Debug, Clone)]
struct CachedDeployment {
data: DeploymentData,
created_at: Instant,
access_count: u64,
last_accessed: Instant,
}
/// Cached filesystem information
#[derive(Debug, Clone)]
struct CachedFilesystem {
data: FilesystemData,
created_at: Instant,
access_count: u64,
last_accessed: Instant,
}
/// Package data structure
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PackageData {
pub name: String,
pub version: String,
pub dependencies: Vec<String>,
pub conflicts: Vec<String>,
pub provides: Vec<String>,
pub description: Option<String>,
pub size: u64,
}
/// Deployment data structure
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DeploymentData {
pub commit_checksum: String,
pub packages: Vec<PackageData>,
pub filesystem_info: FilesystemData,
pub metadata: String,
pub created_at: u64,
}
/// Filesystem data structure
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct FilesystemData {
pub total_files: u64,
pub total_directories: u64,
pub total_size: u64,
pub file_types: HashMap<String, u64>,
}
/// Metrics collector for performance monitoring
#[derive(Debug)]
struct MetricsCollector {
operation_times: HashMap<String, Vec<Duration>>,
cache_hits: u64,
cache_misses: u64,
memory_usage: u64,
parallel_operations: u64,
errors: Vec<ErrorMetric>,
}
/// Error metric for tracking performance issues
#[derive(Debug, Clone)]
struct ErrorMetric {
operation: String,
error: String,
timestamp: Instant,
duration: Duration,
}
/// Memory pool for efficient memory management
#[derive(Debug)]
struct MemoryPool {
buffers: Vec<Vec<u8>>,
max_buffer_size: usize,
total_allocated: usize,
peak_usage: usize,
}
/// Advanced performance configuration
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AdvancedPerformanceConfig {
pub adaptive_caching: bool,
pub intelligent_memory_management: bool,
pub performance_prediction: bool,
pub auto_optimization: bool,
pub cache_eviction_strategy: CacheEvictionStrategy,
pub memory_pressure_threshold: f64,
pub performance_monitoring_interval: u64,
pub optimization_trigger_threshold: f64,
pub max_parallel_ops: Option<usize>,
pub max_memory_mb: Option<usize>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum CacheEvictionStrategy {
LRU,
LFU,
Adaptive,
TimeBased,
}
impl Default for AdvancedPerformanceConfig {
fn default() -> Self {
Self {
adaptive_caching: true,
intelligent_memory_management: true,
performance_prediction: true,
auto_optimization: true,
cache_eviction_strategy: CacheEvictionStrategy::Adaptive,
memory_pressure_threshold: 0.8,
performance_monitoring_interval: 60,
optimization_trigger_threshold: 0.7,
max_parallel_ops: None,
max_memory_mb: None,
}
}
}
/// Performance prediction model
#[derive(Debug)]
struct PerformancePredictor {
historical_data: Vec<PerformanceDataPoint>,
prediction_model: Option<PredictionModel>,
last_prediction: Option<PerformancePrediction>,
}
#[derive(Debug, Clone)]
struct PerformanceDataPoint {
timestamp: chrono::DateTime<chrono::Utc>,
operation_type: String,
duration: Duration,
memory_usage: u64,
cache_hit_rate: f64,
parallel_operations: u64,
}
#[derive(Debug, Clone)]
struct PredictionModel {
model_type: String,
accuracy: f64,
last_updated: chrono::DateTime<chrono::Utc>,
}
#[derive(Debug, Clone)]
struct PerformancePrediction {
operation_type: String,
predicted_duration: Duration,
confidence: f64,
recommended_optimizations: Vec<String>,
}
/// Adaptive cache manager
#[derive(Debug)]
struct AdaptiveCacheManager {
cache_stats: HashMap<String, CacheStats>,
eviction_policy: CacheEvictionStrategy,
adaptive_thresholds: HashMap<String, f64>,
performance_history: Vec<CachePerformancePoint>,
}
#[derive(Debug, Clone)]
struct CacheStats {
hits: u64,
misses: u64,
evictions: u64,
size: usize,
last_access: Instant,
access_frequency: f64,
}
#[derive(Debug, Clone)]
struct CachePerformancePoint {
timestamp: chrono::DateTime<chrono::Utc>,
hit_rate: f64,
memory_usage: u64,
eviction_rate: f64,
}
/// Intelligent memory manager
#[derive(Debug)]
struct IntelligentMemoryManager {
memory_pressure_history: Vec<MemoryPressurePoint>,
allocation_patterns: HashMap<String, AllocationPattern>,
optimization_suggestions: Vec<MemoryOptimization>,
auto_cleanup_enabled: bool,
}
#[derive(Debug, Clone)]
struct MemoryPressurePoint {
timestamp: chrono::DateTime<chrono::Utc>,
pressure_level: f64,
available_memory: u64,
total_memory: u64,
}
#[derive(Debug, Clone)]
struct AllocationPattern {
pattern_type: String,
frequency: u64,
average_size: u64,
lifetime: Duration,
}
#[derive(Debug, Clone)]
struct MemoryOptimization {
optimization_type: String,
description: String,
expected_improvement: f64,
implementation_cost: OptimizationCost,
}
#[derive(Debug, Clone)]
enum OptimizationCost {
Low,
Medium,
High,
}
impl PerformanceManager {
/// Create a new performance manager
pub fn new(max_parallel_ops: usize, max_memory_mb: usize) -> Self {
let cache = Arc::new(RwLock::new(Cache {
package_cache: HashMap::new(),
deployment_cache: HashMap::new(),
filesystem_cache: HashMap::new(),
last_cleanup: Instant::now(),
}));
let metrics = Arc::new(Mutex::new(MetricsCollector {
operation_times: HashMap::new(),
cache_hits: 0,
cache_misses: 0,
memory_usage: 0,
parallel_operations: 0,
errors: Vec::new(),
}));
let parallel_semaphore = Arc::new(Semaphore::new(max_parallel_ops));
let memory_pool = Arc::new(Mutex::new(MemoryPool {
buffers: Vec::new(),
max_buffer_size: max_memory_mb * 1024 * 1024,
total_allocated: 0,
peak_usage: 0,
}));
PerformanceManager {
cache,
metrics,
parallel_semaphore,
memory_pool,
advanced_config: None,
adaptive_cache: None,
intelligent_memory: None,
predictor: None,
}
}
/// Create a new performance manager with advanced features
pub fn new_advanced(config: AdvancedPerformanceConfig) -> Self {
let basic_config = PerformanceConfig {
max_cache_size: 1000,
max_memory_mb: 512,
max_parallel_ops: 10,
cache_ttl_seconds: 3600,
enable_metrics: true,
enable_memory_pool: true,
};
let cache = Arc::new(RwLock::new(Cache {
package_cache: HashMap::new(),
deployment_cache: HashMap::new(),
filesystem_cache: HashMap::new(),
last_cleanup: Instant::now(),
}));
let metrics = Arc::new(Mutex::new(MetricsCollector {
operation_times: HashMap::new(),
cache_hits: 0,
cache_misses: 0,
memory_usage: 0,
parallel_operations: 0,
errors: Vec::new(),
}));
let parallel_semaphore = Arc::new(Semaphore::new(config.max_parallel_ops.unwrap_or(10)));
let memory_pool = Arc::new(Mutex::new(MemoryPool {
buffers: Vec::new(),
max_buffer_size: config.max_memory_mb.unwrap_or(512) * 1024 * 1024,
total_allocated: 0,
peak_usage: 0,
}));
// Initialize advanced components
let adaptive_cache = if config.adaptive_caching {
Some(Arc::new(Mutex::new(AdaptiveCacheManager {
cache_stats: HashMap::new(),
eviction_policy: config.cache_eviction_strategy.clone(),
adaptive_thresholds: HashMap::new(),
performance_history: Vec::new(),
})))
} else {
None
};
let intelligent_memory = if config.intelligent_memory_management {
Some(Arc::new(Mutex::new(IntelligentMemoryManager {
memory_pressure_history: Vec::new(),
allocation_patterns: HashMap::new(),
optimization_suggestions: Vec::new(),
auto_cleanup_enabled: config.auto_optimization,
})))
} else {
None
};
let predictor = if config.performance_prediction {
Some(Arc::new(Mutex::new(PerformancePredictor {
historical_data: Vec::new(),
prediction_model: None,
last_prediction: None,
})))
} else {
None
};
PerformanceManager {
cache,
metrics,
parallel_semaphore,
memory_pool,
advanced_config: Some(config),
adaptive_cache,
intelligent_memory,
predictor,
}
}
/// Get package data with caching
pub async fn get_package_data(&self, package_name: &str) -> Result<Option<PackageData>, Box<dyn std::error::Error + Send + Sync>> {
let start_time = Instant::now();
// Check cache first - release lock before await
let cached_data = {
let cache = self.cache.read().unwrap();
cache.package_cache.get(package_name).cloned()
};
if let Some(cached_package) = cached_data {
// Update access count and last accessed time
{
let mut cache = self.cache.write().unwrap();
if let Some(cached_package) = cache.package_cache.get_mut(package_name) {
cached_package.access_count += 1;
cached_package.last_accessed = Instant::now();
}
}
// Update metrics separately
{
let mut metrics = self.metrics.lock().unwrap();
metrics.cache_hits += 1;
metrics.operation_times.entry("cache_hit".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
}
return Ok(Some(cached_package.data.clone()));
}
// Cache miss - fetch from source
{
let mut metrics = self.metrics.lock().unwrap();
metrics.cache_misses += 1;
}
let package_data = self.fetch_package_data_internal(package_name).await?;
// Cache the result
if let Some(data) = &package_data {
// Apply adaptive eviction if cache is full
if self.cache.read().unwrap().package_cache.len() >= 1000 {
drop(self.cache.read().unwrap()); // Release lock before await
self.apply_adaptive_eviction_packages(&mut self.cache.write().unwrap().package_cache).await?;
let mut cache = self.cache.write().unwrap();
cache.package_cache.insert(package_name.to_string(), CachedPackage {
data: data.clone(),
created_at: Instant::now(),
access_count: 1,
last_accessed: Instant::now(),
});
} else {
let mut cache = self.cache.write().unwrap();
cache.package_cache.insert(package_name.to_string(), CachedPackage {
data: data.clone(),
created_at: Instant::now(),
access_count: 1,
last_accessed: Instant::now(),
});
}
}
Ok(package_data)
}
/// Get package data with adaptive caching
pub async fn get_package_data_adaptive(&self, package_name: &str) -> Result<Option<PackageData>, Box<dyn std::error::Error + Send + Sync>> {
let start_time = Instant::now();
// Check if adaptive caching is enabled
if let Some(adaptive_cache) = &self.adaptive_cache {
// Update adaptive cache statistics
{
let mut cache_manager = adaptive_cache.lock().unwrap();
// Collect data before multiple borrows
let threshold = cache_manager.adaptive_thresholds.get(package_name).unwrap_or(&0.5).clone();
let stats = cache_manager.cache_stats.entry(package_name.to_string()).or_insert(CacheStats {
hits: 0,
misses: 0,
evictions: 0,
size: 0,
access_frequency: 0.0,
last_access: Instant::now(),
});
// Collect data before multiple borrows
let access_frequency = stats.access_frequency;
let evictions = stats.evictions;
let hits = stats.hits;
let misses = stats.misses;
// Update stats
stats.hits += 1;
stats.access_frequency = access_frequency * 0.9 + 0.1; // Exponential moving average
stats.last_access = Instant::now();
// Calculate eviction rate
let eviction_rate = if hits + misses > 0 {
evictions as f64 / (hits + misses) as f64
} else {
0.0
};
// Add performance history point
cache_manager.performance_history.push(CachePerformancePoint {
timestamp: chrono::Utc::now(),
hit_rate: access_frequency,
memory_usage: self.memory_pool.lock().unwrap().total_allocated as u64,
eviction_rate,
});
}
// Check cache with adaptive threshold
if let Some(cached) = self.cache.read().unwrap().package_cache.get(package_name) {
return Ok(Some(cached.data.clone()));
} else {
// Cache miss - fetch from source
let package_data = self.get_package_data(package_name).await?;
// Cache the result with adaptive strategy
if let Some(data) = &package_data {
let mut cache = self.cache.write().unwrap();
// Apply adaptive eviction if needed
if cache.package_cache.len() >= 1000 {
self.apply_adaptive_eviction(&mut cache.package_cache).await?;
}
cache.package_cache.insert(package_name.to_string(), CachedPackage {
data: data.clone(),
created_at: Instant::now(),
access_count: 1,
last_accessed: Instant::now(),
});
}
return Ok(package_data);
}
}
// Cache miss - fetch from source
let package_data = self.get_package_data(package_name).await?;
// Cache the result with adaptive strategy
if let Some(data) = &package_data {
let mut cache = self.cache.write().unwrap();
// Apply adaptive eviction if needed
if cache.package_cache.len() >= 1000 {
self.apply_adaptive_eviction(&mut cache.package_cache).await?;
}
cache.package_cache.insert(package_name.to_string(), CachedPackage {
data: data.clone(),
created_at: Instant::now(),
access_count: 1,
last_accessed: Instant::now(),
});
}
Ok(package_data)
}
/// Get deployment data with caching
pub async fn get_deployment_data(&self, commit_checksum: &str) -> Result<Option<DeploymentData>, Box<dyn std::error::Error + Send + Sync>> {
let start_time = Instant::now();
// Check cache first
{
let cache = self.cache.read().unwrap();
if let Some(cached) = cache.deployment_cache.get(commit_checksum) {
let mut metrics = self.metrics.lock().unwrap();
metrics.cache_hits += 1;
metrics.operation_times.entry("cache_hit".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
return Ok(Some(cached.data.clone()));
}
}
// Cache miss - fetch from source
let mut metrics = self.metrics.lock().unwrap();
metrics.cache_misses += 1;
let deployment_data = self.fetch_deployment_data_internal(commit_checksum).await?;
// Cache the result
if let Some(data) = &deployment_data {
let mut cache = self.cache.write().unwrap();
cache.deployment_cache.insert(commit_checksum.to_string(), CachedDeployment {
data: data.clone(),
created_at: Instant::now(),
access_count: 1,
last_accessed: Instant::now(),
});
}
metrics.operation_times.entry("deployment_fetch".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
Ok(deployment_data)
}
/// Parallel package processing
pub async fn process_packages_parallel(&self, packages: &[String]) -> Result<Vec<PackageData>, Box<dyn std::error::Error + Send + Sync>> {
let start_time = Instant::now();
let mut results = Vec::new();
// Process packages sequentially for now to avoid Send issues
for package in packages {
match self.get_package_data(package).await {
Ok(Some(package_data)) => {
results.push(package_data);
}
Ok(None) => {
warn!("Package not found: {}", package);
}
Err(e) => {
// Update metrics
{
let mut metrics = self.metrics.lock().unwrap();
metrics.errors.push(ErrorMetric {
operation: "parallel_package_processing".to_string(),
error: e.to_string(),
timestamp: Instant::now(),
duration: start_time.elapsed(),
});
}
}
}
}
// Update metrics
{
let mut metrics = self.metrics.lock().unwrap();
metrics.parallel_operations += 1;
metrics.operation_times.entry("parallel_processing".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
}
Ok(results)
}
/// Memory-optimized file processing
pub async fn process_files_memory_optimized(&self, file_paths: &[String]) -> Result<Vec<FileData>, Box<dyn std::error::Error>> {
let start_time = Instant::now();
let mut results = Vec::new();
// Get memory buffer from pool
let buffer = self.get_memory_buffer().await?;
for file_path in file_paths {
let file_data = self.process_file_with_buffer(file_path, &buffer).await?;
results.push(file_data);
}
// Return buffer to pool
self.return_memory_buffer(buffer).await?;
let mut metrics = self.metrics.lock().unwrap();
metrics.operation_times.entry("memory_optimized_processing".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
Ok(results)
}
/// Cache cleanup to prevent memory leaks
pub async fn cleanup_cache(&self) -> Result<(), Box<dyn std::error::Error>> {
let start_time = Instant::now();
let mut cache = self.cache.write().unwrap();
let now = Instant::now();
// Remove expired entries (older than 1 hour)
let max_age = Duration::from_secs(3600);
cache.package_cache.retain(|_, cached| {
now.duration_since(cached.created_at) < max_age
});
cache.deployment_cache.retain(|_, cached| {
now.duration_since(cached.created_at) < max_age
});
cache.filesystem_cache.retain(|_, cached| {
now.duration_since(cached.created_at) < max_age
});
cache.last_cleanup = now;
let mut metrics = self.metrics.lock().unwrap();
metrics.operation_times.entry("cache_cleanup".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
info!("Cache cleanup completed");
Ok(())
}
/// Get performance metrics
pub fn get_metrics(&self) -> PerformanceMetrics {
let cache = self.cache.read().unwrap();
let metrics = self.metrics.lock().unwrap();
let memory_pool = self.memory_pool.lock().unwrap();
let avg_operation_times: HashMap<String, Duration> = metrics.operation_times
.iter()
.map(|(operation, times)| {
let avg = times.iter().sum::<Duration>() / times.len() as u32;
(operation.clone(), avg)
})
.collect();
PerformanceMetrics {
cache_hits: metrics.cache_hits,
cache_misses: metrics.cache_misses,
cache_hit_rate: if metrics.cache_hits + metrics.cache_misses > 0 {
metrics.cache_hits as f64 / (metrics.cache_hits + metrics.cache_misses) as f64
} else {
0.0
},
memory_usage_mb: memory_pool.total_allocated as f64 / 1024.0 / 1024.0,
peak_memory_usage_mb: memory_pool.peak_usage as f64 / 1024.0 / 1024.0,
parallel_operations: metrics.parallel_operations,
error_count: metrics.errors.len(),
avg_operation_times,
cache_size: cache.package_cache.len() + cache.deployment_cache.len() + cache.filesystem_cache.len(),
}
}
/// Optimize memory usage
pub async fn optimize_memory(&self) -> Result<(), Box<dyn std::error::Error>> {
let start_time = Instant::now();
// Clean up cache
self.cleanup_cache().await?;
// Compact memory pool
let mut memory_pool = self.memory_pool.lock().unwrap();
memory_pool.buffers.retain(|buffer| buffer.len() > 0);
memory_pool.buffers.shrink_to_fit();
let mut metrics = self.metrics.lock().unwrap();
metrics.operation_times.entry("memory_optimization".to_string()).or_insert_with(Vec::new).push(start_time.elapsed());
info!("Memory optimization completed");
Ok(())
}
/// Intelligent memory optimization
pub async fn optimize_memory_intelligent(&self) -> Result<Vec<MemoryOptimization>, Box<dyn std::error::Error + Send + Sync>> {
if let Some(intelligent_memory) = &self.intelligent_memory {
let mut memory_manager = intelligent_memory.lock().unwrap();
// Analyze memory pressure
let current_pressure = self.calculate_memory_pressure().await.map_err(|e| format!("Memory pressure calculation failed: {}", e))?;
memory_manager.memory_pressure_history.push(MemoryPressurePoint {
timestamp: chrono::Utc::now(),
pressure_level: current_pressure,
available_memory: 0, // Would get from system
total_memory: 0, // Would get from system
});
// Generate optimization suggestions
let mut optimizations = Vec::new();
if current_pressure > 0.8 {
optimizations.push(MemoryOptimization {
optimization_type: "Aggressive cleanup".to_string(),
description: "High memory pressure detected, performing aggressive cleanup".to_string(),
expected_improvement: 0.3,
implementation_cost: OptimizationCost::Low,
});
}
if current_pressure > 0.6 {
optimizations.push(MemoryOptimization {
optimization_type: "Cache optimization".to_string(),
description: "Optimizing cache usage to reduce memory footprint".to_string(),
expected_improvement: 0.2,
implementation_cost: OptimizationCost::Medium,
});
}
// Apply optimizations if auto-optimization is enabled
if memory_manager.auto_cleanup_enabled {
for optimization in &optimizations {
self.apply_memory_optimization(optimization).await.map_err(|e| format!("Memory optimization failed: {}", e))?;
}
}
memory_manager.optimization_suggestions = optimizations.clone();
Ok(optimizations)
} else {
Err("Intelligent memory management not enabled".into())
}
}
/// Predict performance for an operation
pub async fn predict_performance(&self, operation_type: &str, input_size: usize) -> Result<PerformancePrediction, Box<dyn std::error::Error>> {
if let Some(predictor) = &self.predictor {
let mut predictor = predictor.lock().unwrap();
// Add current data point
let current_metrics = self.metrics.lock().unwrap();
let avg_duration = current_metrics.operation_times
.get(operation_type)
.and_then(|times| {
if times.is_empty() {
None
} else {
Some(times.iter().sum::<Duration>() / times.len() as u32)
}
})
.unwrap_or(Duration::from_millis(100));
predictor.historical_data.push(PerformanceDataPoint {
timestamp: chrono::Utc::now(),
operation_type: operation_type.to_string(),
duration: avg_duration,
memory_usage: current_metrics.memory_usage,
cache_hit_rate: if current_metrics.cache_hits + current_metrics.cache_misses > 0 {
current_metrics.cache_hits as f64 / (current_metrics.cache_hits + current_metrics.cache_misses) as f64
} else {
0.0
},
parallel_operations: current_metrics.parallel_operations,
});
// Simple prediction model (linear regression)
let prediction = self.calculate_performance_prediction(&predictor.historical_data, operation_type, input_size);
predictor.last_prediction = Some(prediction.clone());
Ok(prediction)
} else {
Err("Performance prediction not enabled".into())
}
}
/// Calculate performance prediction using simple linear regression
fn calculate_performance_prediction(&self, historical_data: &[PerformanceDataPoint], operation_type: &str, input_size: usize) -> PerformancePrediction {
let relevant_data: Vec<_> = historical_data
.iter()
.filter(|d| d.operation_type == operation_type)
.collect();
if relevant_data.len() < 2 {
return PerformancePrediction {
operation_type: operation_type.to_string(),
predicted_duration: Duration::from_millis(100),
confidence: 0.1,
recommended_optimizations: vec!["Insufficient data for accurate prediction".to_string()],
};
}
// Simple linear regression: duration = a * input_size + b
let n = relevant_data.len() as f64;
let sum_x: f64 = relevant_data.iter().map(|d| d.duration.as_millis() as f64).sum();
let sum_y: f64 = relevant_data.iter().map(|d| d.memory_usage as f64).sum();
let sum_xy: f64 = relevant_data.iter()
.map(|d| d.duration.as_millis() as f64 * d.memory_usage as f64)
.sum();
let sum_x2: f64 = relevant_data.iter()
.map(|d| (d.duration.as_millis() as f64).powi(2))
.sum();
let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x * sum_x);
let intercept = (sum_y - slope * sum_x) / n;
let predicted_duration_ms = slope * input_size as f64 + intercept;
let predicted_duration = Duration::from_millis(predicted_duration_ms.max(1.0) as u64);
// Calculate confidence based on data consistency
let avg_duration = sum_x / n;
let variance = relevant_data.iter()
.map(|d| (d.duration.as_millis() as f64 - avg_duration).powi(2))
.sum::<f64>() / n;
let confidence = (1.0 / (1.0 + variance / 1000.0)).min(1.0);
// Generate optimization recommendations
let mut recommendations = Vec::new();
if predicted_duration > Duration::from_secs(5) {
recommendations.push("Consider parallel processing".to_string());
}
if input_size > 1000 {
recommendations.push("Consider caching intermediate results".to_string());
}
if confidence < 0.5 {
recommendations.push("Collect more performance data".to_string());
}
PerformancePrediction {
operation_type: operation_type.to_string(),
predicted_duration,
confidence,
recommended_optimizations: recommendations,
}
}
/// Apply adaptive cache eviction
async fn apply_adaptive_eviction(&self, cache: &mut HashMap<String, CachedPackage>) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
if let Some(adaptive_cache) = &self.adaptive_cache {
let cache_manager = adaptive_cache.lock().unwrap();
// Collect data before multiple borrows
let eviction_policy = cache_manager.eviction_policy.clone();
drop(cache_manager); // Release lock
match eviction_policy {
CacheEvictionStrategy::LRU => {
// Remove least recently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.last_accessed)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::LFU => {
// Remove least frequently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.access_count)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::Adaptive => {
// Use adaptive strategy based on access patterns
let mut items: Vec<_> = cache.iter().map(|(k, v)| {
let score = v.access_count as f64 / v.last_accessed.elapsed().as_secs() as f64;
(k.clone(), score)
}).collect();
items.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::TimeBased => {
// Remove items older than threshold
let threshold = Instant::now() - Duration::from_secs(3600); // 1 hour
cache.retain(|_, item| item.created_at > threshold);
}
}
}
Ok(())
}
/// Apply adaptive cache eviction for packages
async fn apply_adaptive_eviction_packages(&self, cache: &mut HashMap<String, CachedPackage>) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
if let Some(adaptive_cache) = &self.adaptive_cache {
let cache_manager = adaptive_cache.lock().unwrap();
// Collect data before multiple borrows
let eviction_policy = cache_manager.eviction_policy.clone();
let adaptive_thresholds = cache_manager.adaptive_thresholds.clone();
drop(cache_manager); // Release lock
match eviction_policy {
CacheEvictionStrategy::LRU => {
// Remove least recently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.last_accessed)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::LFU => {
// Remove least frequently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.access_count)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::Adaptive => {
// Use adaptive strategy based on access patterns
let mut items: Vec<_> = cache.iter().map(|(k, v)| {
let score = v.access_count as f64 / v.last_accessed.elapsed().as_secs() as f64;
(k.clone(), score)
}).collect();
items.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::TimeBased => {
// Remove items older than threshold
let threshold = Instant::now() - Duration::from_secs(3600); // 1 hour
cache.retain(|_, item| item.created_at > threshold);
}
}
}
Ok(())
}
/// Apply adaptive cache eviction for deployments
async fn apply_adaptive_eviction_deployments(&self, cache: &mut HashMap<String, CachedDeployment>) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
if let Some(adaptive_cache) = &self.adaptive_cache {
let cache_manager = adaptive_cache.lock().unwrap();
// Collect data before multiple borrows
let eviction_policy = cache_manager.eviction_policy.clone();
drop(cache_manager); // Release lock
match eviction_policy {
CacheEvictionStrategy::LRU => {
// Remove least recently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.last_accessed)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::LFU => {
// Remove least frequently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.access_count)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::Adaptive => {
// Use adaptive strategy based on access patterns
let mut items: Vec<_> = cache.iter().map(|(k, v)| {
let score = v.access_count as f64 / v.last_accessed.elapsed().as_secs() as f64;
(k.clone(), score)
}).collect();
items.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::TimeBased => {
// Remove items older than threshold
let threshold = Instant::now() - Duration::from_secs(3600); // 1 hour
cache.retain(|_, item| item.created_at > threshold);
}
}
}
Ok(())
}
/// Apply adaptive cache eviction for filesystem
async fn apply_adaptive_eviction_filesystem(&self, cache: &mut HashMap<String, CachedFilesystem>) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
if let Some(adaptive_cache) = &self.adaptive_cache {
let cache_manager = adaptive_cache.lock().unwrap();
// Collect data before multiple borrows
let eviction_policy = cache_manager.eviction_policy.clone();
drop(cache_manager); // Release lock
match eviction_policy {
CacheEvictionStrategy::LRU => {
// Remove least recently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.last_accessed)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::LFU => {
// Remove least frequently used items
let mut items: Vec<_> = cache.iter().map(|(k, v)| (k.clone(), v.access_count)).collect();
items.sort_by(|a, b| a.1.cmp(&b.1));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::Adaptive => {
// Use adaptive strategy based on access patterns
let mut items: Vec<_> = cache.iter().map(|(k, v)| {
let score = v.access_count as f64 / v.last_accessed.elapsed().as_secs() as f64;
(k.clone(), score)
}).collect();
items.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
// Remove 10% of items
let to_remove = (items.len() / 10).max(1);
for (key, _) in items.iter().take(to_remove) {
cache.remove(key);
}
}
CacheEvictionStrategy::TimeBased => {
// Remove items older than threshold
let threshold = Instant::now() - Duration::from_secs(3600); // 1 hour
cache.retain(|_, item| item.created_at > threshold);
}
}
}
Ok(())
}
/// Calculate current memory pressure
async fn calculate_memory_pressure(&self) -> Result<f64, Box<dyn std::error::Error + Send + Sync>> {
let memory_pool = self.memory_pool.lock().unwrap();
let current_usage = memory_pool.total_allocated as f64;
let max_usage = memory_pool.max_buffer_size as f64;
Ok(current_usage / max_usage)
}
/// Apply memory optimization
async fn apply_memory_optimization(&self, optimization: &MemoryOptimization) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
match optimization.optimization_type.as_str() {
"Aggressive cleanup" => {
// Perform aggressive cache cleanup
let mut cache = self.cache.write().unwrap();
cache.package_cache.clear();
cache.deployment_cache.clear();
cache.filesystem_cache.clear();
// Clear memory pool
let mut memory_pool = self.memory_pool.lock().unwrap();
memory_pool.buffers.clear();
memory_pool.total_allocated = 0;
}
"Cache optimization" => {
// Optimize cache by removing least useful items
// Apply eviction to each cache type separately
{
let mut cache = self.cache.write().unwrap();
self.apply_adaptive_eviction_packages(&mut cache.package_cache).await?;
self.apply_adaptive_eviction_deployments(&mut cache.deployment_cache).await?;
self.apply_adaptive_eviction_filesystem(&mut cache.filesystem_cache).await?;
}
}
_ => {
warn!("Unknown optimization type: {}", optimization.optimization_type);
}
}
Ok(())
}
/// Get advanced performance metrics
pub fn get_advanced_metrics(&self) -> AdvancedPerformanceMetrics {
let basic_metrics = self.get_metrics();
AdvancedPerformanceMetrics {
basic_metrics,
cache_efficiency: self.calculate_cache_efficiency(),
memory_efficiency: self.calculate_memory_efficiency(),
parallel_efficiency: self.calculate_parallel_efficiency(),
prediction_accuracy: self.calculate_prediction_accuracy(),
optimization_effectiveness: self.calculate_optimization_effectiveness(),
}
}
/// Calculate cache efficiency
fn calculate_cache_efficiency(&self) -> f64 {
let metrics = self.metrics.lock().unwrap();
if metrics.cache_hits + metrics.cache_misses > 0 {
metrics.cache_hits as f64 / (metrics.cache_hits + metrics.cache_misses) as f64
} else {
0.0
}
}
/// Calculate memory efficiency
fn calculate_memory_efficiency(&self) -> f64 {
let memory_pool = self.memory_pool.lock().unwrap();
if memory_pool.max_buffer_size > 0 {
1.0 - (memory_pool.total_allocated as f64 / memory_pool.max_buffer_size as f64)
} else {
0.0
}
}
/// Calculate parallel efficiency
fn calculate_parallel_efficiency(&self) -> f64 {
let metrics = self.metrics.lock().unwrap();
if metrics.parallel_operations > 0 {
// Simple efficiency calculation based on operation times
let avg_time = metrics.operation_times.values()
.flat_map(|times| times.iter())
.sum::<Duration>();
let total_operations = metrics.operation_times.values()
.map(|times| times.len())
.sum::<usize>();
if total_operations > 0 {
let avg_operation_time = avg_time / total_operations as u32;
// Efficiency decreases with longer operations
1.0 / (1.0 + avg_operation_time.as_millis() as f64 / 1000.0)
} else {
0.0
}
} else {
0.0
}
}
/// Calculate prediction accuracy
fn calculate_prediction_accuracy(&self) -> f64 {
if let Some(predictor) = &self.predictor {
let predictor = predictor.lock().unwrap();
if let Some(last_prediction) = &predictor.last_prediction {
// Simple accuracy calculation based on confidence
last_prediction.confidence
} else {
0.0
}
} else {
0.0
}
}
/// Calculate optimization effectiveness
fn calculate_optimization_effectiveness(&self) -> f64 {
if let Some(intelligent_memory) = &self.intelligent_memory {
let memory_manager = intelligent_memory.lock().unwrap();
let recent_optimizations = memory_manager.optimization_suggestions.len();
// Effectiveness based on number of optimizations applied
if recent_optimizations > 0 {
(recent_optimizations as f64).min(1.0)
} else {
0.0
}
} else {
0.0
}
}
// Helper methods
pub async fn get_memory_buffer(&self) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
let mut memory_pool = self.memory_pool.lock().unwrap();
if let Some(buffer) = memory_pool.buffers.pop() {
memory_pool.total_allocated -= buffer.len();
Ok(buffer)
} else {
// Create new buffer if pool is empty
let buffer = vec![0u8; 1024 * 1024]; // 1MB buffer
memory_pool.total_allocated += buffer.len();
memory_pool.peak_usage = memory_pool.peak_usage.max(memory_pool.total_allocated);
Ok(buffer)
}
}
/// Return memory buffer to pool
async fn return_memory_buffer(&self, buffer: Vec<u8>) -> Result<(), Box<dyn std::error::Error>> {
let buffer_len = buffer.len();
let mut memory_pool = self.memory_pool.lock().unwrap();
if memory_pool.total_allocated + buffer_len <= memory_pool.max_buffer_size {
memory_pool.buffers.push(buffer);
memory_pool.total_allocated += buffer_len;
}
Ok(())
}
async fn process_file_with_buffer(&self, file_path: &str, buffer: &[u8]) -> Result<FileData, Box<dyn std::error::Error>> {
// Simulate file processing with buffer
tokio::time::sleep(Duration::from_millis(5)).await;
Ok(FileData {
path: file_path.to_string(),
size: buffer.len() as u64,
processed: true,
})
}
async fn fetch_package_data_internal(&self, package_name: &str) -> Result<Option<PackageData>, Box<dyn std::error::Error + Send + Sync>> {
// Simulate fetching from APT database
tokio::time::sleep(Duration::from_millis(10)).await;
Ok(Some(PackageData {
name: package_name.to_string(),
version: "1.0.0".to_string(),
dependencies: vec!["libc6".to_string()],
conflicts: Vec::new(),
provides: Vec::new(),
description: Some("Sample package".to_string()),
size: 1024,
}))
}
async fn fetch_deployment_data_internal(&self, commit_checksum: &str) -> Result<Option<DeploymentData>, Box<dyn std::error::Error + Send + Sync>> {
// Simulate fetching from OSTree repository
tokio::time::sleep(Duration::from_millis(20)).await;
Ok(Some(DeploymentData {
commit_checksum: commit_checksum.to_string(),
packages: vec![PackageData {
name: "sample-package".to_string(),
version: "1.0.0".to_string(),
dependencies: vec!["libc6".to_string()],
conflicts: Vec::new(),
provides: Vec::new(),
description: Some("Sample package".to_string()),
size: 2048,
}],
filesystem_info: FilesystemData {
total_files: 1000,
total_directories: 100,
total_size: 1024 * 1024,
file_types: HashMap::new(),
},
metadata: "Sample deployment metadata".to_string(),
created_at: chrono::Utc::now().timestamp() as u64,
}))
}
}
impl Clone for PerformanceManager {
fn clone(&self) -> Self {
PerformanceManager {
cache: self.cache.clone(),
metrics: self.metrics.clone(),
parallel_semaphore: self.parallel_semaphore.clone(),
memory_pool: self.memory_pool.clone(),
advanced_config: self.advanced_config.clone(),
adaptive_cache: self.adaptive_cache.clone(),
intelligent_memory: self.intelligent_memory.clone(),
predictor: self.predictor.clone(),
}
}
}
/// Performance metrics structure
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PerformanceMetrics {
pub cache_hits: u64,
pub cache_misses: u64,
pub cache_hit_rate: f64,
pub memory_usage_mb: f64,
pub peak_memory_usage_mb: f64,
pub parallel_operations: u64,
pub error_count: usize,
pub avg_operation_times: HashMap<String, Duration>,
pub cache_size: usize,
}
/// Advanced performance metrics
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AdvancedPerformanceMetrics {
pub basic_metrics: PerformanceMetrics,
pub cache_efficiency: f64,
pub memory_efficiency: f64,
pub parallel_efficiency: f64,
pub prediction_accuracy: f64,
pub optimization_effectiveness: f64,
}
/// File data structure
#[derive(Debug, Clone)]
pub struct FileData {
pub path: String,
pub size: u64,
pub processed: bool,
}
/// Performance optimization configuration
#[derive(Debug, Clone)]
pub struct PerformanceConfig {
pub max_cache_size: usize,
pub max_memory_mb: usize,
pub max_parallel_ops: usize,
pub cache_ttl_seconds: u64,
pub enable_metrics: bool,
pub enable_memory_pool: bool,
}
impl Default for PerformanceConfig {
fn default() -> Self {
PerformanceConfig {
max_cache_size: 1000,
max_memory_mb: 512,
max_parallel_ops: 10,
cache_ttl_seconds: 3600,
enable_metrics: true,
enable_memory_pool: true,
}
}
}