Add new internal upload target for Google Cloud Platform and osbuild-upload-gcp CLI tool which uses the API. Supported features are: - Authenticate with GCP using explicitly provided JSON credentials file or let the authentication be handled automatically by the Google cloud client library. The later is useful e.g. when the worker is running in GCP VM instance, which has associated permissions with it. - Upload an existing image file into existing Storage bucket. - Verify MD5 checksum of the uploaded image file against the local file's checksum. - Import the uploaded image file into Compute Node as an Image. - Delete the uploaded image file after a successful image import. - Delete all cache files from storage created as part of the image import build job. - Share the imported image with a list of specified accounts. GCP-specific image type is not yet added, since GCP supports importing VMDK and VHD images, which the osbuild-composer already supports. Update go.mod, vendor/ content and SPEC file with new dependencies. Signed-off-by: Tomas Hozza <thozza@redhat.com>
336 lines
9.1 KiB
Go
336 lines
9.1 KiB
Go
// Copyright 2017, OpenCensus Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
|
|
package view
|
|
|
|
import (
|
|
"math"
|
|
"time"
|
|
|
|
"go.opencensus.io/metric/metricdata"
|
|
)
|
|
|
|
// AggregationData represents an aggregated value from a collection.
|
|
// They are reported on the view data during exporting.
|
|
// Mosts users won't directly access aggregration data.
|
|
type AggregationData interface {
|
|
isAggregationData() bool
|
|
addSample(v float64, attachments map[string]interface{}, t time.Time)
|
|
clone() AggregationData
|
|
equal(other AggregationData) bool
|
|
toPoint(t metricdata.Type, time time.Time) metricdata.Point
|
|
StartTime() time.Time
|
|
}
|
|
|
|
const epsilon = 1e-9
|
|
|
|
// CountData is the aggregated data for the Count aggregation.
|
|
// A count aggregation processes data and counts the recordings.
|
|
//
|
|
// Most users won't directly access count data.
|
|
type CountData struct {
|
|
Start time.Time
|
|
Value int64
|
|
}
|
|
|
|
func (a *CountData) isAggregationData() bool { return true }
|
|
|
|
func (a *CountData) addSample(_ float64, _ map[string]interface{}, _ time.Time) {
|
|
a.Value = a.Value + 1
|
|
}
|
|
|
|
func (a *CountData) clone() AggregationData {
|
|
return &CountData{Value: a.Value, Start: a.Start}
|
|
}
|
|
|
|
func (a *CountData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*CountData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
|
|
return a.Start.Equal(a2.Start) && a.Value == a2.Value
|
|
}
|
|
|
|
func (a *CountData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
|
switch metricType {
|
|
case metricdata.TypeCumulativeInt64:
|
|
return metricdata.NewInt64Point(t, a.Value)
|
|
default:
|
|
panic("unsupported metricdata.Type")
|
|
}
|
|
}
|
|
|
|
// StartTime returns the start time of the data being aggregated by CountData.
|
|
func (a *CountData) StartTime() time.Time {
|
|
return a.Start
|
|
}
|
|
|
|
// SumData is the aggregated data for the Sum aggregation.
|
|
// A sum aggregation processes data and sums up the recordings.
|
|
//
|
|
// Most users won't directly access sum data.
|
|
type SumData struct {
|
|
Start time.Time
|
|
Value float64
|
|
}
|
|
|
|
func (a *SumData) isAggregationData() bool { return true }
|
|
|
|
func (a *SumData) addSample(v float64, _ map[string]interface{}, _ time.Time) {
|
|
a.Value += v
|
|
}
|
|
|
|
func (a *SumData) clone() AggregationData {
|
|
return &SumData{Value: a.Value, Start: a.Start}
|
|
}
|
|
|
|
func (a *SumData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*SumData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return a.Start.Equal(a2.Start) && math.Pow(a.Value-a2.Value, 2) < epsilon
|
|
}
|
|
|
|
func (a *SumData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
|
switch metricType {
|
|
case metricdata.TypeCumulativeInt64:
|
|
return metricdata.NewInt64Point(t, int64(a.Value))
|
|
case metricdata.TypeCumulativeFloat64:
|
|
return metricdata.NewFloat64Point(t, a.Value)
|
|
default:
|
|
panic("unsupported metricdata.Type")
|
|
}
|
|
}
|
|
|
|
// StartTime returns the start time of the data being aggregated by SumData.
|
|
func (a *SumData) StartTime() time.Time {
|
|
return a.Start
|
|
}
|
|
|
|
// DistributionData is the aggregated data for the
|
|
// Distribution aggregation.
|
|
//
|
|
// Most users won't directly access distribution data.
|
|
//
|
|
// For a distribution with N bounds, the associated DistributionData will have
|
|
// N+1 buckets.
|
|
type DistributionData struct {
|
|
Count int64 // number of data points aggregated
|
|
Min float64 // minimum value in the distribution
|
|
Max float64 // max value in the distribution
|
|
Mean float64 // mean of the distribution
|
|
SumOfSquaredDev float64 // sum of the squared deviation from the mean
|
|
CountPerBucket []int64 // number of occurrences per bucket
|
|
// ExemplarsPerBucket is slice the same length as CountPerBucket containing
|
|
// an exemplar for the associated bucket, or nil.
|
|
ExemplarsPerBucket []*metricdata.Exemplar
|
|
bounds []float64 // histogram distribution of the values
|
|
Start time.Time
|
|
}
|
|
|
|
func newDistributionData(agg *Aggregation, t time.Time) *DistributionData {
|
|
bucketCount := len(agg.Buckets) + 1
|
|
return &DistributionData{
|
|
CountPerBucket: make([]int64, bucketCount),
|
|
ExemplarsPerBucket: make([]*metricdata.Exemplar, bucketCount),
|
|
bounds: agg.Buckets,
|
|
Min: math.MaxFloat64,
|
|
Max: math.SmallestNonzeroFloat64,
|
|
Start: t,
|
|
}
|
|
}
|
|
|
|
// Sum returns the sum of all samples collected.
|
|
func (a *DistributionData) Sum() float64 { return a.Mean * float64(a.Count) }
|
|
|
|
func (a *DistributionData) variance() float64 {
|
|
if a.Count <= 1 {
|
|
return 0
|
|
}
|
|
return a.SumOfSquaredDev / float64(a.Count-1)
|
|
}
|
|
|
|
func (a *DistributionData) isAggregationData() bool { return true }
|
|
|
|
// TODO(songy23): support exemplar attachments.
|
|
func (a *DistributionData) addSample(v float64, attachments map[string]interface{}, t time.Time) {
|
|
if v < a.Min {
|
|
a.Min = v
|
|
}
|
|
if v > a.Max {
|
|
a.Max = v
|
|
}
|
|
a.Count++
|
|
a.addToBucket(v, attachments, t)
|
|
|
|
if a.Count == 1 {
|
|
a.Mean = v
|
|
return
|
|
}
|
|
|
|
oldMean := a.Mean
|
|
a.Mean = a.Mean + (v-a.Mean)/float64(a.Count)
|
|
a.SumOfSquaredDev = a.SumOfSquaredDev + (v-oldMean)*(v-a.Mean)
|
|
}
|
|
|
|
func (a *DistributionData) addToBucket(v float64, attachments map[string]interface{}, t time.Time) {
|
|
var count *int64
|
|
var i int
|
|
var b float64
|
|
for i, b = range a.bounds {
|
|
if v < b {
|
|
count = &a.CountPerBucket[i]
|
|
break
|
|
}
|
|
}
|
|
if count == nil { // Last bucket.
|
|
i = len(a.bounds)
|
|
count = &a.CountPerBucket[i]
|
|
}
|
|
*count++
|
|
if exemplar := getExemplar(v, attachments, t); exemplar != nil {
|
|
a.ExemplarsPerBucket[i] = exemplar
|
|
}
|
|
}
|
|
|
|
func getExemplar(v float64, attachments map[string]interface{}, t time.Time) *metricdata.Exemplar {
|
|
if len(attachments) == 0 {
|
|
return nil
|
|
}
|
|
return &metricdata.Exemplar{
|
|
Value: v,
|
|
Timestamp: t,
|
|
Attachments: attachments,
|
|
}
|
|
}
|
|
|
|
func (a *DistributionData) clone() AggregationData {
|
|
c := *a
|
|
c.CountPerBucket = append([]int64(nil), a.CountPerBucket...)
|
|
c.ExemplarsPerBucket = append([]*metricdata.Exemplar(nil), a.ExemplarsPerBucket...)
|
|
return &c
|
|
}
|
|
|
|
func (a *DistributionData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*DistributionData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
if a2 == nil {
|
|
return false
|
|
}
|
|
if len(a.CountPerBucket) != len(a2.CountPerBucket) {
|
|
return false
|
|
}
|
|
for i := range a.CountPerBucket {
|
|
if a.CountPerBucket[i] != a2.CountPerBucket[i] {
|
|
return false
|
|
}
|
|
}
|
|
return a.Start.Equal(a2.Start) &&
|
|
a.Count == a2.Count &&
|
|
a.Min == a2.Min &&
|
|
a.Max == a2.Max &&
|
|
math.Pow(a.Mean-a2.Mean, 2) < epsilon && math.Pow(a.variance()-a2.variance(), 2) < epsilon
|
|
}
|
|
|
|
func (a *DistributionData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
|
switch metricType {
|
|
case metricdata.TypeCumulativeDistribution:
|
|
buckets := []metricdata.Bucket{}
|
|
for i := 0; i < len(a.CountPerBucket); i++ {
|
|
buckets = append(buckets, metricdata.Bucket{
|
|
Count: a.CountPerBucket[i],
|
|
Exemplar: a.ExemplarsPerBucket[i],
|
|
})
|
|
}
|
|
bucketOptions := &metricdata.BucketOptions{Bounds: a.bounds}
|
|
|
|
val := &metricdata.Distribution{
|
|
Count: a.Count,
|
|
Sum: a.Sum(),
|
|
SumOfSquaredDeviation: a.SumOfSquaredDev,
|
|
BucketOptions: bucketOptions,
|
|
Buckets: buckets,
|
|
}
|
|
return metricdata.NewDistributionPoint(t, val)
|
|
|
|
default:
|
|
// TODO: [rghetia] when we have a use case for TypeGaugeDistribution.
|
|
panic("unsupported metricdata.Type")
|
|
}
|
|
}
|
|
|
|
// StartTime returns the start time of the data being aggregated by DistributionData.
|
|
func (a *DistributionData) StartTime() time.Time {
|
|
return a.Start
|
|
}
|
|
|
|
// LastValueData returns the last value recorded for LastValue aggregation.
|
|
type LastValueData struct {
|
|
Value float64
|
|
}
|
|
|
|
func (l *LastValueData) isAggregationData() bool {
|
|
return true
|
|
}
|
|
|
|
func (l *LastValueData) addSample(v float64, _ map[string]interface{}, _ time.Time) {
|
|
l.Value = v
|
|
}
|
|
|
|
func (l *LastValueData) clone() AggregationData {
|
|
return &LastValueData{l.Value}
|
|
}
|
|
|
|
func (l *LastValueData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*LastValueData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return l.Value == a2.Value
|
|
}
|
|
|
|
func (l *LastValueData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
|
switch metricType {
|
|
case metricdata.TypeGaugeInt64:
|
|
return metricdata.NewInt64Point(t, int64(l.Value))
|
|
case metricdata.TypeGaugeFloat64:
|
|
return metricdata.NewFloat64Point(t, l.Value)
|
|
default:
|
|
panic("unsupported metricdata.Type")
|
|
}
|
|
}
|
|
|
|
// StartTime returns an empty time value as start time is not recorded when using last value
|
|
// aggregation.
|
|
func (l *LastValueData) StartTime() time.Time {
|
|
return time.Time{}
|
|
}
|
|
|
|
// ClearStart clears the Start field from data if present. Useful for testing in cases where the
|
|
// start time will be nondeterministic.
|
|
func ClearStart(data AggregationData) {
|
|
switch data := data.(type) {
|
|
case *CountData:
|
|
data.Start = time.Time{}
|
|
case *SumData:
|
|
data.Start = time.Time{}
|
|
case *DistributionData:
|
|
data.Start = time.Time{}
|
|
}
|
|
}
|