- Fix parallel execution logic to properly handle JoinHandle<Result<R, E>> types - Use join_all instead of try_join_all for proper Result handling - Fix double question mark (??) issue in parallel execution methods - Clean up unused imports in parallel and cache modules - Ensure all performance optimization modules compile successfully - Fix CI build failures caused by compilation errors
7.2 KiB
7.2 KiB
Performance Optimization Plan
🎯 Objective
Optimize apt-ostree performance to achieve comparable or better performance than rpm-ostree while maintaining full compatibility and functionality.
📊 Performance Targets
Command Response Times
- Status command: < 100ms
- Package search: < 500ms for 1000+ packages
- System upgrade: < 30s for standard updates
- Package installation: < 10s for single package
- Deployment operations: < 60s for full deployment
Resource Usage
- Memory: < 100MB peak usage
- CPU: < 50% during heavy operations
- Disk I/O: Optimized for minimal seeks
- Network: Efficient package downloads
Scalability
- Package count: Support 10,000+ packages efficiently
- Concurrent operations: Handle 5+ simultaneous transactions
- Large deployments: Manage 100GB+ system images
🔍 Performance Analysis Areas
1. Critical Paths
- Package resolution: Dependency calculation and conflict resolution
- OSTree operations: Commit creation, checkout, and deployment
- APT integration: Package cache management and downloads
- Transaction processing: Atomic operation coordination
2. Bottlenecks
- File I/O: OSTree repository access and package extraction
- Network: Package repository synchronization
- Memory: Large package metadata handling
- CPU: Complex dependency resolution algorithms
3. Optimization Opportunities
- Caching: Intelligent caching of frequently accessed data
- Parallelization: Concurrent execution of independent operations
- Lazy loading: Defer non-critical operations
- Compression: Efficient data storage and transfer
🚀 Optimization Strategies
1. Caching Layer
// Package metadata cache
pub struct PackageCache {
metadata: LruCache<String, PackageInfo>,
dependencies: LruCache<String, Vec<String>>,
conflicts: LruCache<String, Vec<String>>,
}
// OSTree commit cache
pub struct CommitCache {
commits: LruCache<String, CommitInfo>,
trees: LruCache<String, TreeInfo>,
}
2. Parallel Processing
// Concurrent package operations
pub async fn install_packages_parallel(
packages: Vec<String>,
max_concurrent: usize,
) -> AptOstreeResult<()> {
let chunks: Vec<Vec<String>> = packages
.chunks(max_concurrent)
.map(|chunk| chunk.to_vec())
.collect();
let futures: Vec<_> = chunks
.into_iter()
.map(|chunk| install_package_chunk(chunk))
.collect();
futures::future::join_all(futures).await;
Ok(())
}
3. Lazy Loading
// Lazy package information loading
pub struct LazyPackageInfo {
name: String,
loaded: Arc<RwLock<bool>>,
info: Arc<RwLock<Option<PackageInfo>>>,
}
impl LazyPackageInfo {
pub async fn get_info(&self) -> AptOstreeResult<PackageInfo> {
let mut loaded = self.loaded.write().await;
if !*loaded {
let info = self.load_package_info(&self.name).await?;
*self.info.write().await = Some(info.clone());
*loaded = true;
Ok(info)
} else {
Ok(self.info.read().await.clone().unwrap())
}
}
}
4. Memory Management
// Efficient memory usage
pub struct MemoryPool {
buffers: Vec<Vec<u8>>,
max_size: usize,
current_size: AtomicUsize,
}
impl MemoryPool {
pub fn get_buffer(&self, size: usize) -> Option<Vec<u8>> {
if self.current_size.load(Ordering::Relaxed) + size <= self.max_size {
self.current_size.fetch_add(size, Ordering::Relaxed);
Some(vec![0; size])
} else {
None
}
}
}
📈 Performance Monitoring
1. Metrics Collection
// Performance metrics
pub struct PerformanceMetrics {
command_times: HashMap<String, Vec<Duration>>,
memory_usage: Vec<MemorySnapshot>,
cpu_usage: Vec<CpuSnapshot>,
io_operations: Vec<IoOperation>,
}
impl PerformanceMetrics {
pub fn record_command_time(&mut self, command: &str, duration: Duration) {
self.command_times
.entry(command.to_string())
.or_insert_with(Vec::new)
.push(duration);
}
}
2. Profiling Tools
- CPU profiling: Identify hot paths and bottlenecks
- Memory profiling: Track memory allocation patterns
- I/O profiling: Monitor disk and network operations
- Network profiling: Analyze package download performance
3. Benchmarking Suite
// Performance benchmarks
#[cfg(test)]
mod benchmarks {
use criterion::{black_box, criterion_group, criterion_main, Criterion};
fn benchmark_package_search(c: &mut Criterion) {
c.bench_function("package_search_1000", |b| {
b.iter(|| {
let manager = AptManager::new();
black_box(manager.search_packages("test"))
})
});
}
criterion_group!(benches, benchmark_package_search);
criterion_main!(benches);
}
🔧 Implementation Plan
Phase 1: Foundation (Week 5)
- Implement basic caching layer
- Add performance metrics collection
- Set up benchmarking framework
- Profile current performance baseline
Phase 2: Core Optimizations (Week 5)
- Optimize package resolution algorithms
- Implement parallel package operations
- Add intelligent caching strategies
- Optimize OSTree operations
Phase 3: Advanced Optimizations (Week 6)
- Implement lazy loading patterns
- Add memory pool management
- Optimize network operations
- Fine-tune concurrent operations
Phase 4: Validation (Week 6)
- Performance regression testing
- Benchmark against rpm-ostree
- User acceptance testing
- Production deployment validation
📊 Success Metrics
Quantitative Goals
- Speed: 20% improvement in command response times
- Efficiency: 30% reduction in memory usage
- Throughput: 50% increase in concurrent operations
- Scalability: Support 2x larger package repositories
Qualitative Goals
- User Experience: Noticeably faster operations
- Resource Usage: Lower system impact during operations
- Reliability: Consistent performance under load
- Maintainability: Clean, optimized codebase
🚨 Risks and Mitigation
Risks
- Complexity: Over-optimization may reduce code clarity
- Compatibility: Performance changes may affect behavior
- Testing: Performance improvements require extensive validation
- Maintenance: Optimized code may be harder to maintain
Mitigation
- Incremental approach: Implement optimizations gradually
- Comprehensive testing: Validate all changes thoroughly
- Documentation: Maintain clear documentation of optimizations
- Code review: Ensure code quality and maintainability